TBT Tunnel and Bridge Technologies

Tunnel and Bridge Technologies SL Marqués de Mulhacén 11, bajos 1 08034 Barcelona, Spain phone: (+34) 932.030.474

Tunnel and Bridge Technologies Inc
Partner at (EWE+ General Partnership)
904-40 University Ave Toronto, ON M5J1T1 Canada
Phone: (+1) 437-776-3530 (Rosa Tijeras EWE+)

e-mail: admon@tbtechno.com

Web: www.tbtechno.com

Index

- COMPANY INTRODUCTION
- QUALITY POLICY
- TECHNICAL SERVICES
- REFERENCES
- CUSTOMERS

Company Introduction

Tunnel and Bridge Technologies S.L. is a civil engineering consulting firm that focuses on the design of bridges, outstanding structures and underground construction. Founded in 2001 by Civil Engineers with extensive national and international experience, has been developing its work with the confidence of administrations and construction companies.

Tunnel and Bridge Technologies Inc, the Canadian branch, is partner of EWE+ General Partnership which provides consultant services on structures and geotechnics.

Quality policy

Tunnel and Bridge Technologies Quality Management System is certified by SGS as a demonstration of compliance with the international standard ISO 9001: 2015.

Our mission is to be a benchmark for all our customers and actively contribute to social welfare and creating value, maximizing the profitability of the resources used and minimizing the environmental impact of our activities.

Technical Services

TBT provides technical services in all structural specialities.

- > Detailed design of Bridges and Viaducts
- ➤ Underground Construction
- > Residential and Industrial Buildings
- Construction Engineering
- > Specialized Services
- > Structural monitoring and inspection
- > BIM models

Bridges and Viaducts

Alamillo Bridge, Spain
Design Supervision, wind tunnel studies,
construction procedure and monitoring

Long Span Bridge

Characteristics: Span length: 200m
Cable stay bridges

Bridges and Viaducts

Port Forum Footbridge, Spain
Detailed Design & Construction Supervision

Long Span Bridge

Characteristics: Overall length: 210 m

Span length: 140+50 m

Steel truss

Bridges and Viaducts

Ponte Europa over Mondego River, Portugal Verification of erection procedure by FEM

Long Span Bridge

Characteristics: Overall length: 326.55 m

Span length: 45 + 50.625 + 185.625 + 45.3m

Cable stay bridge with spatial composite truss deck

Bridges and Viaducts

Bridge over Odiel River, Spain Cable stressing program

Long Span Bridge

Characteristics: Overall length: 170 m

Span length: 85+85 m 2 arches with lower deck

Bridges and Viaducts

Manzanal Bridges, Spain Tender Design

Long Span Bridge

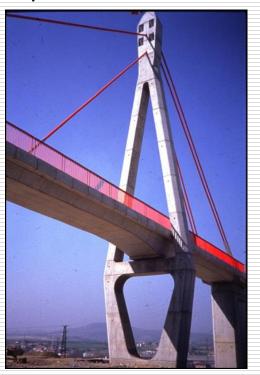
Characteristics: Overall length: 425 m

Span length: 65+295+65 m

Bridges and Viaducts

Soto de Ribera Bridge, Spain Detailed Design **Long Span Bridge**

Characteristics: Overall length: 200 m

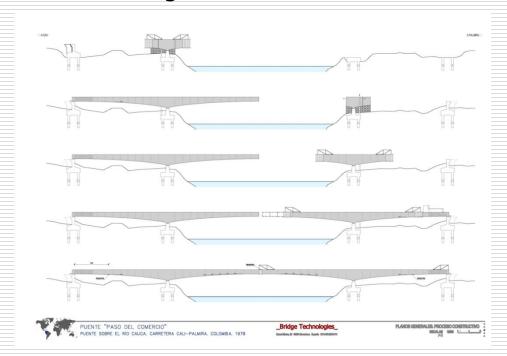

Span lengt: 10+90+90+10

Cable stay bridge

Bridges and Viaducts

Txori-Herri Footbridge, Spain

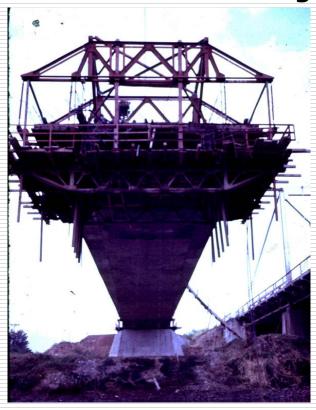
Detailed Design


Long Span Bridge

Characteristics: Overall length: 60 m

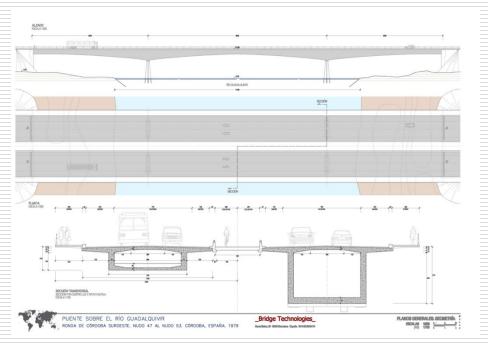
Span length: 15 + 45 m

Bridges and Viaducts


Bridge over Cauca River, Colombia Detailed Design

Characteristics: Overall length: 164 m

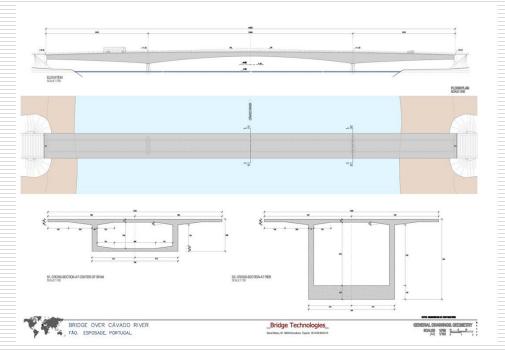
Main Span length: 82 m


Balanced Cantilever Bridge

Bridges and Viaducts

Bridge over Guadalquivir River, Spain Detailed Design

Balanced Cantilever Bridge


Characteristics: Overall length: 184 m

Span lengths: 52+80+52 m

Bridges and Viaducts

Bridge over Cavado River, Portugal Preliminary Design

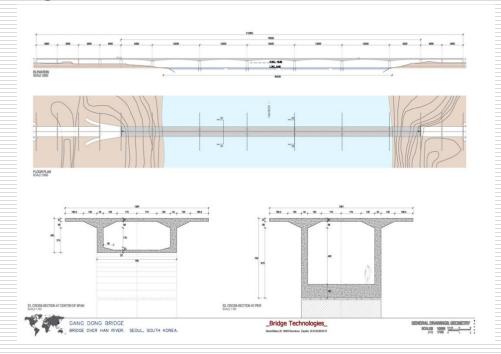
Balanced Cantilever Bridge

Characteristics: Overall length: 250 m

Span length: 62.5+125+62.5 m

Bridges and Viaducts

Bridge over Indus River, Pakistan Preliminary Design **Balanced Cantilever Bridge**


Characteristics: Overall length: 622 m

Span length: 111+200+200+111 m

Bridges and Viaducts

Bridge over Han River, Korea Preliminary Design

Balanced Cantilever Bridge

Characteristics: Overall length: 1,126 m

Span length: 4x56+82.50+5x125+82.50+2x56 m

Bridges and Viaducts

Caboters Viaduct, Spain Detailed Design

Railway Bridge

Characteristics: Overall length: 422 m

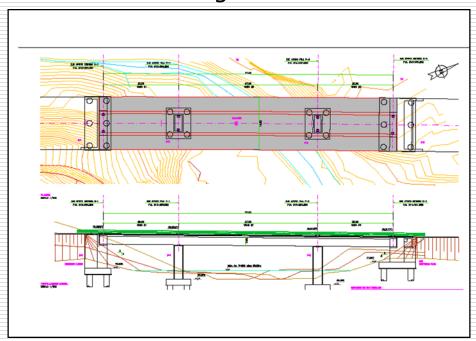
Main Span length: 47 m

Bridges and Viaducts

Can Fares Viaduct, Spain

Detailed Design

Railway Bridge


Characteristics: Overall length: 100 m

Span lengths: 27.5 + 45 + 27.5 m

Bridges and Viaducts

Casinyola 1 Viaduct, Spain Detailed Design

Railway Bridge

Characteristics: Overall length: 77 m

Span lengths: 20 + 37 + 20 m

Cross - section: Prestressed Concrete Box Girder

Bridges and Viaducts

Casinyola 2 Viaduct, Spain Detailed Design

Railway Bridge

Characteristics: Overall length: 127 m

Span lengths: 26.5 + 37 + 37 + 26.5 m

Cross - section: Prestressed Concrete Box Girder

Bridges and Viaducts

Cinyana Viaduct, Spain Detailed Design

Characteristics: Overall length: 96 m

Span lengths: 15+22+22+15 m

Cross - section: Hollow core slab

Bridges and Viaducts

Fluvià Viaduct, Spain Detailed Design Railway Bridge

Characteristics: Overall length: 835 m

Typical span length: 60 m (Max. span: 70 m) Cross – section: Prestressed Concrete Box Girder

Bridges and Viaducts

Santa Ana Viaduct, Spain Detailed Design **Railway Bridge**

Characteristics: Overall length: 220 m

Span length: 35+45+60+45+35 m

Cross - Section: Prestressed Concrete Box Girder

Bridges and Viaducts

Espinazo Viaduct, Spain Pier Design Railway Bridge

Characteristics: Overall length: 870 m

Typical Span length: 50 m High earthquake risk area

Bridges and Viaducts

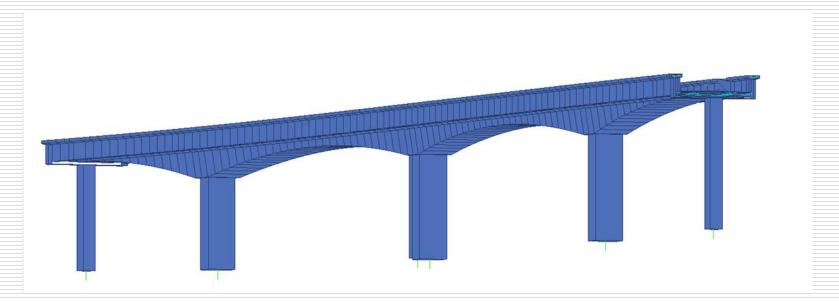
Salto del Carnero Viaduct, Spain Pier Design Railway Bridge

Characteristics: Overall length: 830 + 730 m

Span length: 30 m

Bridges and Viaducts

Riyadh Metro Line 3 Viaduct, Saudi Arabia Piers Foundations Design Railway Bridge

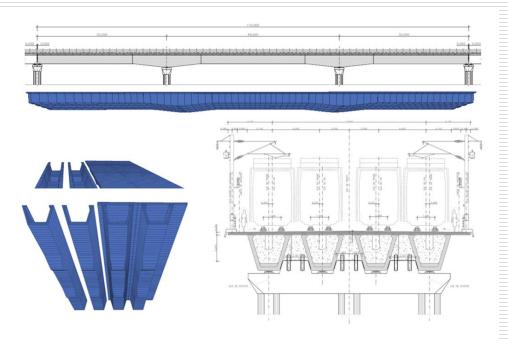


Detailed Structural and Geotechnical Design of 600 piers foundations. Footings, piles, micropiles,...

Bridges and Viaducts

Doha Red Line Metro Viaduct, Qatar Detailed Design

Railway Bridge

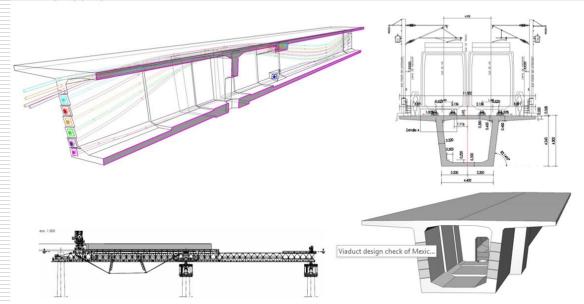

Detailed Structural and Geotechnical Design of 3 viaducts:

- 20 + 32 + 32 m span length
- 28 + 24 + 24 m span length
- 33 + 62.5 + 55.4 + 33 m span length with a variable depth deck

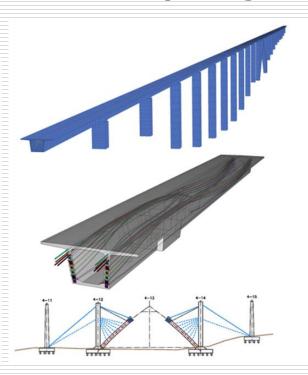
Bridges and Viaducts

Mexico City-Toluca Interurban Rail Project, Mexico Detailed Design

Railway Bridge



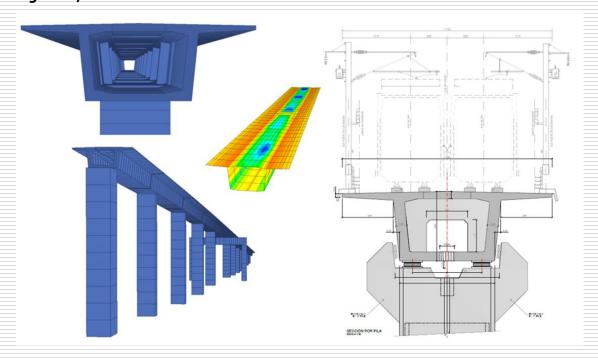
Detailed Structural and Geotechnical Design of a continuos viaduct, being 46 m the longest span. Decks formed by 2 to up to 4 U precast prestressed concrete beams.


Bridges and Viaducts

Viaduct for Section 4 of the Mexico City-Toluca Interurban Rail Project, Mexico

Design Checking

Railway Bridge


Continuos prestressed concrete viaduct (1,448 m long) with a cantiléver erected central arch (60 m high; 128 m span). Bridge deck is 11.5 m wide, bearing 2 tracks.

Bridges and Viaducts

Viaduct for Section 2 of the Mexico City-Toluca Interurban Rail Project, Mexico

Railway Bridge

Design Checking



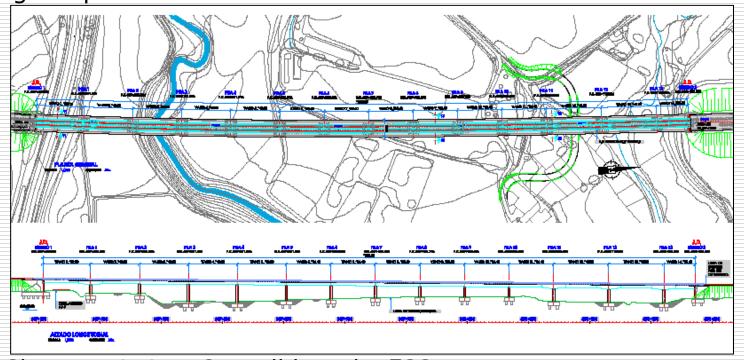
Continuos prestressed concrete viaduct (3,865 m long) with extreme spans of 44 m + intermidiate spans of 55 m. Span by span by mobile falsework construction method.

Bridges and Viaducts

Viaducts for Riyadh Metro, Lines 4 & 6, Arabia Saudi Design Checking

Railway Bridge

Prestressed concrete deck. Variable spans fromo 40 m to 96 m, curved and straight. Various construction methods: precast segments, precast beams+upper slab, launching girder and balanced cantiléver method.

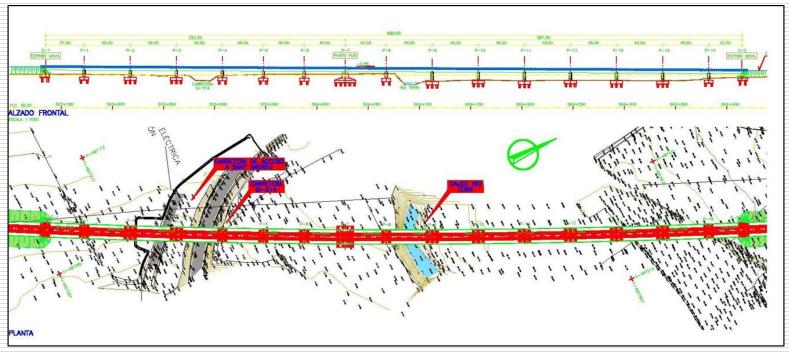

Tunnel and Bridge Technologies

Spain & Canada

Bridges and Viaducts

Aragal Viaduct, Spain Design Supervision

Railway Bridge

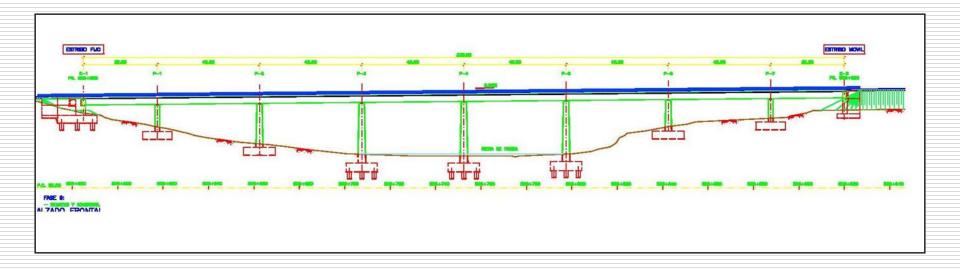

Characteristics: Overall length: 533 m

Span length: 39+4x40+6x36.4+2x45+25.6 m

Bridges and Viaducts

Terri Viaduct, Spain Design Supervision

Railway Bridge

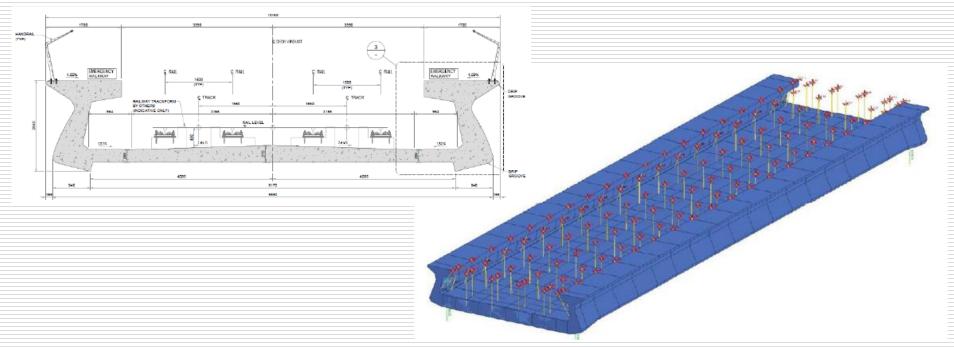

Characteristics: Overall length: 680 m

Span length: 37.5+3x45+4x40+7x45+32.5

Bridges and Viaducts

Farga Viaduct, Spain Design Supervision

Railway Bridge


Characteristics: Overall length: 335 m

Span length: 32.5+6x45+32.5 m

Cross - Section: Prestressed Concrete Box Girder

Bridges and Viaducts

Route 2020 Metro Project, Dubai Preliminary design with fiber reinforced concrete Railway Bridge

Precast prestressed concrete deck. Analysis of the 36 m straight span to assess the feasibility of a fiber reinforced concrete solution.

Bridges and Viaducts

Rosario Victoria Viaduct (over La Plata River), Argentina/Uruguay Design Supervision **Highway Bridge**

Characteristics: Overall length: 4098 m

Bridges and Viaducts

Extradosed Bridge over Pereira Risaralda's Calle 13, Colombia Design Checking

Highway Bridge

Extradosed reinforced concrete bridge (70 m lenght):

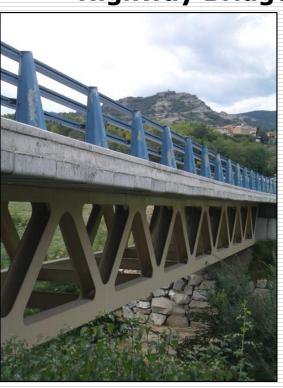
- 35 + 35 span length
- 15.3 m width, allowing for 3 traffic lanes and pedestrian access

Bridges and Viaducts

Hostalrich Bridge, Spain Detailed Design

Highway Bridge

Characteristics: Overall length: 54 m


Bridges and Viaducts

Torelló Bridge, Spain Detailed Design


Characteristics: Overall length: 54 m

Highway Bridge

Bridges and Viaducts

Riera de Rajadell Bridge, Spain Detailed Design

Characteristics: Overall length: 131 m

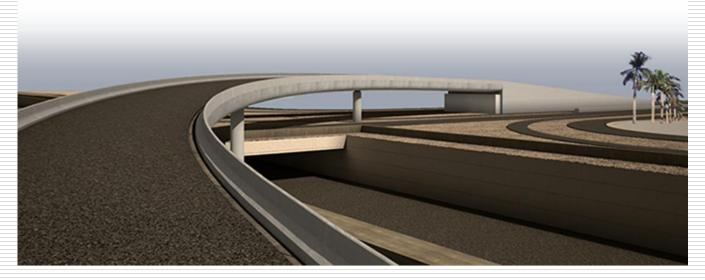
Span length: 40+51+40 m

High strength concrete, External prestressing

Highway Bridge

Bridges and Viaducts

Lleida Bridge, Spain Detailed Design **Highway Bridge**


Characteristics: Overall length: 161.6 m

Span length: 24.8+56+56+24.8 m

High Strength Concrete

Bridges and Viaducts

Abi Bakr Bridge, Riyadh, Arabia Saudi Detailed Design **Highway Bridge**

Characteristics: Overall length: 188.11 m

Span length: 54.21 + 48.68 + 49.85 + 35.37 m

Curvature radius: 125 m

Post-tensioned concrete box girder

Bridges and Viaducts

Osormort Bridge, Spain Detailed Design

Highway Bridge

Characteristics: Overall length: 500.1 m

Span length: 31.7 + 11x39.7 + 31.7 m

Post-tensioned concrete slab girder

Bridges and Viaducts

Cuzco Barajas Bridge, Spain Detailed Design **Highway Bridge**

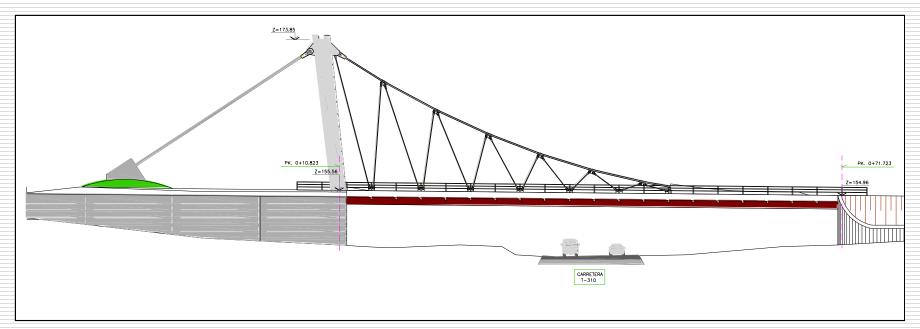
Characteristics: Overall length: 110.3 m

Main Span length: 51 m

Bridges and Viaducts

M30 Bridge Bridge, Spain Detailed Design

Highway Bridge

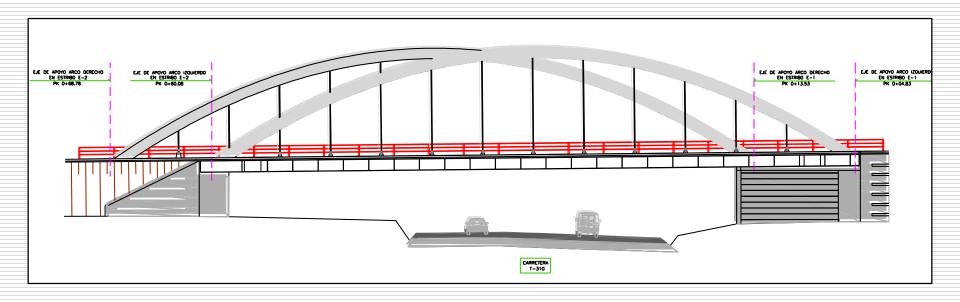

Characteristics: Overall length: 155.6 m

Span lengths: 27.6+32.4+35.6+32.4+27.6 m

Bridges and Viaducts

Bonmont 1 Bridge, Spain Detailed Design

Highway Bridge



Characteristics: Overall length: 60 m

Bridges and Viaducts

Bonmont 2 Bridge, Spain Detailed Design

Highway Bridge

Characteristics: Overall length: 55.25 m

Bridges and Viaducts

Steel footbridge in Tarragona, Spain Detailed Design

Footbridge

Characteristics: Overall length: 376 m

Typical Span length: 16 m

Maximum Span length: 27 m

Bridges and Viaducts

La Torrassa Footbridge, Spain Detailed Design **Footbridge**

Characteristics: Overall length: 262 m

Span length: 20+3x30+30+26+3x32 m

Supported on the diaphragm walls of the tunnel

Underground Structures

Barcelona High Speed Train Tunnel, Spain Supervision, Inspection and Risk Assessment

TBM Tunnel

Prof. Aparicio and Prof. Ramos have been members of the International Board for the supervision of the effects of the tunnel on the World Heritage by UNESCO (Sagrada Familia and Casa Mila by Gaudi):

- Supervision of settlement control during tunneling
- Structural Inspection of previously damaged buildings
- Structural Risk Assessment of buildings

Underground Structures

High Speed Railway Tunnel Girona, Spain Structural Advisors

TBM Tunnel

Characteristics: 3.0 km long (tunnel 1=1.4 km + tunnel 2=1.6 km) 11.475 m excavated diameter.

Tunnel Lining Structural Advisors, Building Assessment, Monitoring Design and Compensation shafts design and monitoring.

Tunnel and Bridge Technologies

Spain & Canada

Underground Structures

Railway TBM Tunnel Galicia, Spain Detailed Design

TBM Tunnel

Characteristics: Twin tunnels 6750 m long each, 8780 mm internal diameter

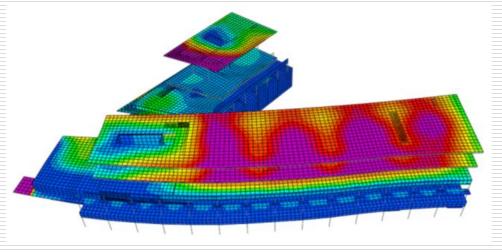
Underground Structures

Line 3 Riyadh Metro, Arabia Saudi Structural Advisors and Checking **TBM Tunnel**

Structural Advisors and Checking of TBM Tunnel 5.3 km long, 9.80 m external diameter

Underground Structures

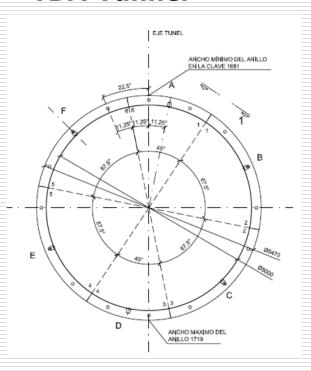
Line 5 Riyadh Metro, Arabia Saudi Special studies on segmental lining **TBM Tunnel**


Detailed design and monitoring of joint strengthening in order to make stable the segmental tunnel lining and combine the tunnel and the stations construction

Underground Structures

York Spadina Subway Extension-Schulich Building, Toronto, Canada Structural Assessment

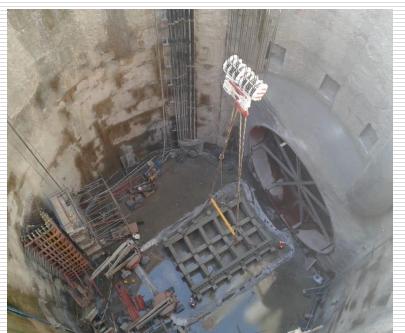
TBM Tunnel

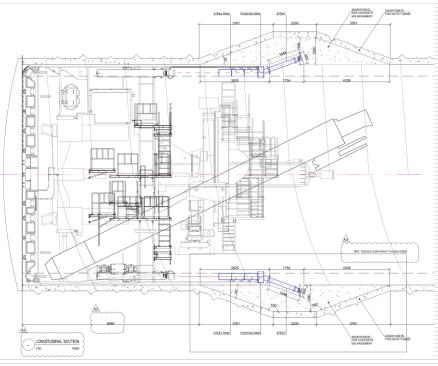

Characteristics: Reinforced concrete building only 1 diameter above tunnel crown. Complete structural assessment of possible damage during tunnelling. Building Risk Analysis.

Underground Structures

Majes-Siguas Project, Peru Detailed Lining Structural Design

TBM Tunnel




Characteristics: Lluclla – Siguas Tunnel: 12.820 km long, Pucará Tunnel: 6.330 km long, Transandino Tunnel: 9.674 km long. 5.47 m external diameter, 235 mm segments depth. Steel Fibre Reinforced Concrete without rebars

Underground Structures

Deep Tunnel Storm Water System Project, Dubai TBM Tunnel

Detailed Structural Design

Design of two different Steel Pushing Frames, one installed inside a NATM tunnel and the other installed inside a circular shaft

Underground Structures

Les Cavorques Tunnel, Spain Detailed Design

Cut&Cover Tunnel

Characteristics: Length: 120 m

Vault dimensions: height: 10 m, width: 14.5 m

Ground over key: 13 m

Tunnel and Bridge Technologies
Spain & Canada

Underground Structures

Can Tunis Tunnel, Spain Detailed Design

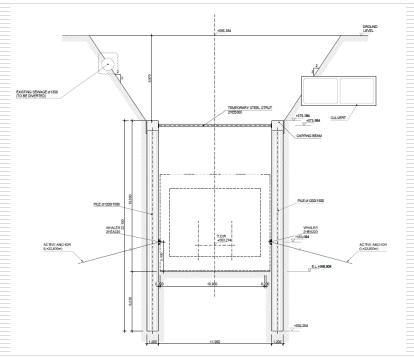
Cut&Cover Tunnel

Characteristics: 2100 m

Underground Structures

La Torrassa Tunnel, Spain Detailed Design

Cut&Cover Tunnel

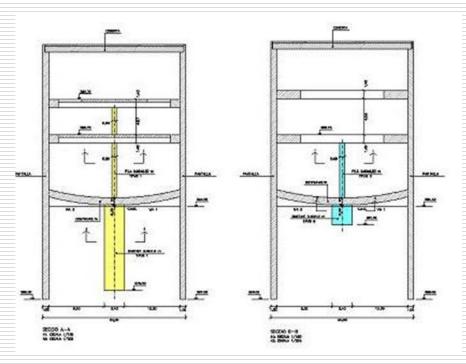

Characteristics: Length 2800 m
The contract included the design of the Ventilation shafts

Underground Structures

Line 3 Riyadh Metro, stretches 3J1, 3K1 &

Cut&Cover Tunnel

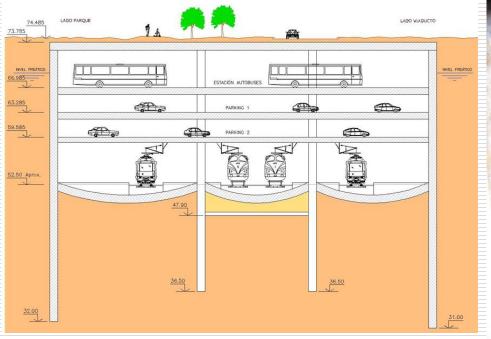
3J2, Arabia Saudi Detailed Design


Characteristics: Length about 4 km

Underground Structures

Terrassa Subway Station, Spain Detailed Design

Cut&Cover Station

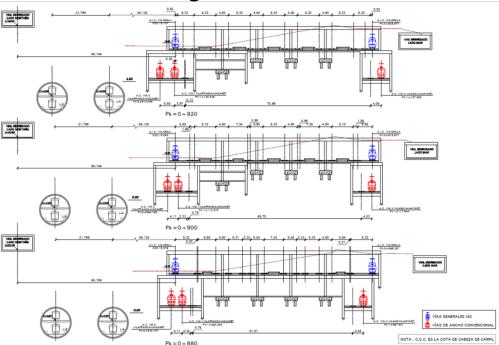


Characteristics: Subway Station, 144 m long, 22 m wide and 28 m deep, 1 m diaphragm walls, surrounded by buildings

Underground Structures

Girona High Speed Train Station, Spain Detailed Design

Cut&Cover Station



Characteristics: 650 m long, 50 m wide, 25 m deep, 20 m of water pressure, diaphragm walls 1.2 m deep, postensioned concrete slabs

Underground Structures

Barcelona High Speed Train Station, Spain

Detailed Design

Characteristics: Length: 624 m

Width: 80 m Depth: 25 m

Cut&Cover Station

Underground Structures

York Spadina Subway Extension - Highway 407 Station, Toronto, Canada Construction Engineering

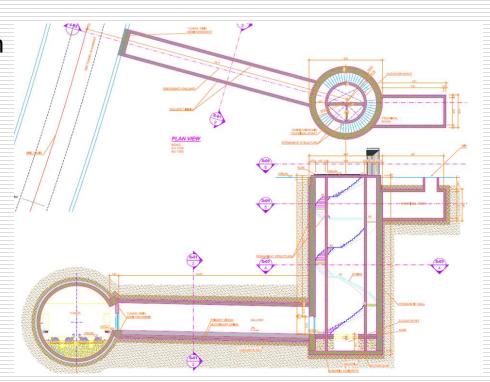
Cut&Cover Station

Characteristics: 165 m long, 19 m wide, 20 m deep. Complete definition of the construction process, structural verification

Underground Structures

Line 9 Barcelona Subway, Spain Structural Advisors

Shaft

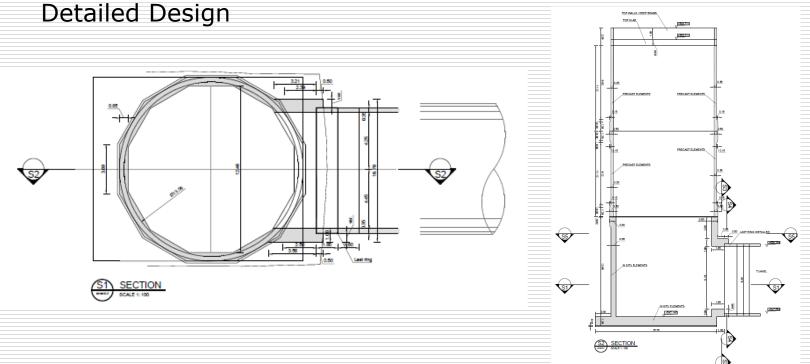

Several deep shafts, specially Zona Universitaria Shaft. 61.6 m deep, 32.8 m internal diameter. Crossed by TBM tunnel eccentrically.

Underground Structures

Line 3 Riyadh Metro, shafts 3E5-3E6 & 3F1-3F2,

Arabia Saudi

Detailed Design



Shaft

Characteristics: Design of 2 ventilation and emergency shafts, and their connection galleries to the TBM tunnel. The depth of the shafts was 22 m and 29 m.

Underground Structures

Line 5 Riyadh Metro, precast shafts, Arabia Saudi Shaft

Characteristics: Design of 12 evacuation and ventilation precast shafts. The depth of the shafts was between 23 m to 36 m.

Structures for Buildings

Line 5 Riyadh Metro, Depot, Arabia Saudi

Detailed Design

Characteristics: Building built in an underground excavation. 56,000 m² plan surface. Verification of all precast elements, detailed design of the in situ slabs, detailed design of the internal steel structure.

Structures for Buildings

Instituto de Microcirugía Ocular (IMO), Spain Detailed Design

Characteristics: Medical center, 17,000 m² plan surface

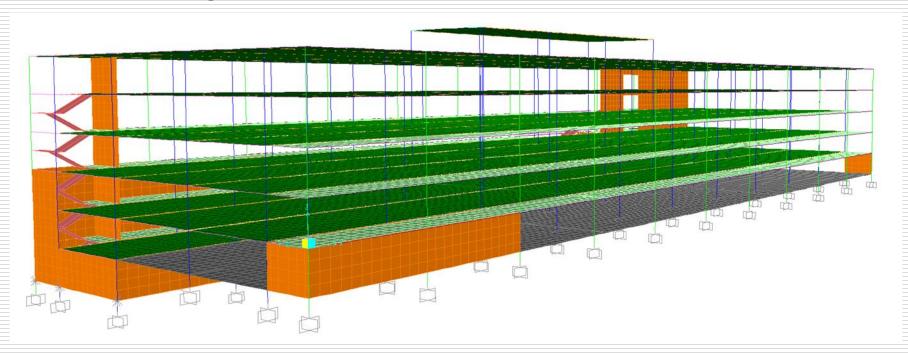
Structures for Buildings

Capitanía Building at Marina "Forum", Barcelona, Spain Detailed Design

Characteristics: Auxiliary Port Building, 2,250 m² plan surface

Structures for Buildings

Barcelona Airport Terminal 1, Steel Structure for Automatic Luggage Transportation System, Spain Detailed Design



Characteristics: Airport Equipment, 18000 m² plan surface

Structures for Buildings

Line 3 Metro Riyadh Park&Ride, Arabia Saudi Detailed Design

Characteristics: 4 Park&Ride Buildings, about 600 parking lots per building, between 5,000 m² to 7,000 m² plan surface per building.

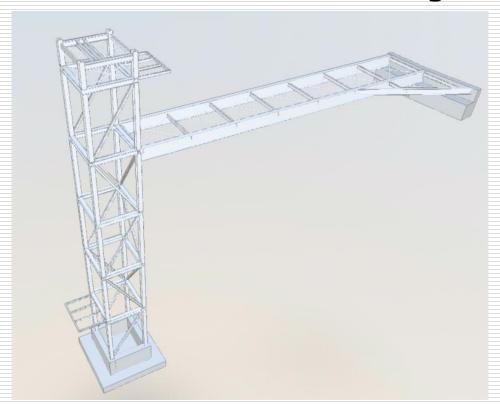
Other Structures

Guatemala Dock, Guatemala Detailed Design

Structural and Geotechnical Design of a Dock supported on 350 x 35 piles on a soft soil in seismic area.

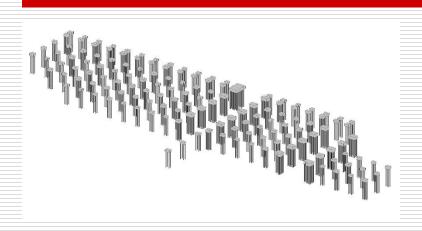
References Structural monitoring and inspection

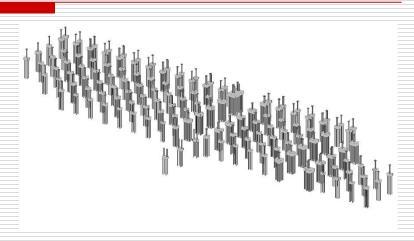
Pedestrian Bridge in "Carrer del Segura", Barcelona, Spain. Instrumentation

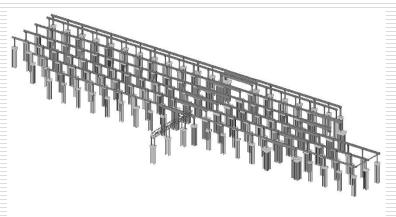


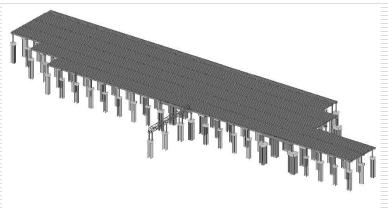
Instrumentation of the Pedestrian Bridge in the neighbourhood "El Polvorí" in Barcelona.

TBT provides services in BIM modelling.


Pedestrian Bridge in "El Polvorí", Barcelona, Spain


BIM models




Bus Depot for TMB (Transports Metropolitans de Barcelona) Zona Franca, Barcelona, Spain

BIM models

Bus Depot for TMB (Transports Metropolitans de Barcelona) Zona Franca, Barcelona, Spain

Administration and Public Companies

Engineering Consultants

Construction companies

Construction companies

Others

Tunnel and Bridge Technologies SL Marqués de Mulhacén 11, bajos 1 08034 Barcelona, Spain phone: (+34) 932.030.474

Tunnel and Bridge Technologies Inc
Partner at (EWE+ General Partnership)

904-40 University Ave Toronto, ON M5J1T1 Canada
Phone: (+1) 437-776-3530 (Rosa Tijeras EWE+)

e-mail: admon@tbtechno.com

Web: www.tbtechno.com